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A calix[4]arene bearing three amide groups (composing a
lanthanide binding site) and one sensitizer (phenacyl group)
bearing an (o-boronylphenyl)methylaminomethyl group (acting as
a sugar-binding site) was synthesized. The energy-transfer to
Eu’* was significantly enhanced whereas that to Tb** was only
slightly enhanced, indicating that in the Eu®* complex the energy
is mainly transferred from the sensitizer whereas in the Tb**
complex it is mainly transferred from the calix[4]arene aromatic
rings. This is a novel method for discriminating the energy-
transfer path.

The luminescence properties of lanthanide ions have been of
much interest because of their potential use as probes and labels
for a variety of chemical and biological applications. To design a
good emitting system one has to take two prerequisites into
consideration: (i) lanthanide ions must be shielded from solvent
molecules through encapsulation into the ligand and (ii) the ligand
must have the lowest excited-state sufficiently high for the
energy-transfer to lanthanide ions.!” More recently, Sabbatini et
al.? found that Eu** and Tb** are strongly encapsulated into
5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(diethylcarba-
moylmethoxy)calix[4]arene (1)°; interestingly, the 1+Tb*
complex exhibited a remarkably high luminescence quantum yield
(® = 0.2). They proposed that 1 possesses a °x, @ level from
which the energy-transfer to °D, or °D, in Tb>* can take place.®
On the other hand, the luminescence quantum yield for 1<Eu** is
extremely low (® = 2 x 10*).® This peculiar finding is
rationalized by the presence of the C=0-to-Eu** charge-transfer
band which efficiently deactives the excited state of the phenol
unit.® To obviate this problem one has to seek for the sensitizer
that has an energy level lower than the charge-transfer band but
higher than the emission band. We synthesized compound 2
bearing a phenacyl group, the Eu** complex of which gave ® =
0.060 suggesting the significant contribution of the energy
transfer process from this group.'®!!

To obtain further insights into the energy transfer mechanism
we newly synthesized compound 3. In 3 the excited state of the
phenacyl group is efficiently quenched by the intramolecular
amine whereas in the presence of saccharides this amine cannot
act as a quencher because of the B-N interaction intensified by
boronic acid-saccharide complexation.'>  Hence, one can
selectively discriminate the energy-transfer path including the
phenacyl group by added saccharides.
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Compound 3 was synthesized according to Scheme 1 and
identified by 'H NMR, IR and mass spectral evidence and
elemental analysis. MeOH (containing 0.2 vol% MeCN) which

can solubilize both 3 and saccharides was used in the
luminescence measurements. Emission and excitation spectra
were corrected precisely by the use of a Hitachi F-4500
fluorescence spectrophotometer.
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Scheme 1. Reagents and conditions: i, LiAlH,, THF; ii,
CgHsCOCl, NEt;, CH,Cly; iii, DDQ, dioxane; iv, Br,, CHCl;; v,
CICH,CONE?Y,, BaO, DMF; vi, K,COs, acetone; vii, LiOH,
MeOH, H,0; viii, (MeSO,),0, CHCl3; xi, MeNH,, MeOH; x, o-
BI'CH2C6H4B(OH)2, CSZCO3, MeCN.

The measurements were carried out in MeOH:MeCN = 500:1
v/v at 25 C. We plotted the emission intensity (A_, 543 nm for
the 3+Tb** complex and 614 nm for the 3*Eu** complex) against
the metal concentration while the concentration of 3 was
maintained constant ([3] = 1.00 x 10° mol dm?). It was found
that the emission intensity is gradually saturated and reaches a
plateau above 3 x 10* mol dm®. Hence, we fixed the metal
concentration t©o 5.00 x 10* mol dm® in the following
experiments.

In Figure 1, we compared the emission spectra of the
complexes 3 with the complexes 2. Since the absorbance
between 2 and 3 at excitation wavelength region is different and
the determination of d in these complex system is not so easy, we
used [I/e (I, relative fluorescence intensity; €, extinction
coefficient) as a measure of ®. It is seen from Figure 1 that the
spectra have four bands; when compared at 543 nm for Tb** and
at 614 nm for Eu**, the I/ values for the complexes 3 are smaller
by a factor of 18 in Tb* and by a factor of 30 in Eu’* than those
for the complexes 2.

Here, we estimated the influence of the saccharide-binding on
the emission spectra. We chose D-fructose which is known to
show the highest affinity with the boronic acid group.'> The
absorption spectra of the 2+Tb’* and 2+Eu** complexes were
slightly changed with the isosbestic points (285 nm for 2<Tb**
and 282 nm for 2<Eu®). The spectral change is attributable to the
interaction between the free lanthanide ions and saccharide'® or to
the weak interaction between saccharides and the complexes. In
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Figure 1. Emission spectra of the Tb* (upper) and Eu™ (lower) complexes:
25 °C, MeOH:MeCN = 500:1 v/v, [2] = [3] = 1.00 x 10"° mol dm?, [TbCL,] =
[EuCl,] = 5.00 x 10 mol dm?3, A, 270 nm. The shorter wavelength light in
emission is filtered with Toshiba Y-43. The absorbances for the complexes are
fully small (0.156 for 2+Tb*, 0.228 for 2<Eu*, 0.102 for 3*Tb*, and 0.180 for
3+Eu*). One can thus regard that the emission intensity can be approximately
compared with I/e.

3+Tb** and 3<Eu® complexes, the absorption spectra were also
changed slightly with the isosbestic points (282 nm for 3.Tb**
and 274 nm for 3<Eu**). The isosbestic wavelengths were used
for excitaion in making plots of (I/I,) versus [D-fructose]
(Figure 2). Itis seen from Figure 2 that the emission intensity of
the complexes 2 is scarcely enhanced by the addition of D-
fructose (less than 1.4 fold). In contrast, the emission intensity
of the complexes 3 is enhanced with increasing D-fructose
concentration, the enhancement magnitude being ca. 9 times for
the 3-Eu®* complex and ca. 2 times for the 3-Tb>* complex. As
the D-fructose-binding to the boronic acid moiety should change
only the energy-transfer efficiency from the phenacyl group, one
can confidently conclude that in the 3<Eu’* complex the excited
energy is transferred mainly from the phenacyl group whereas in
the 3<Tb>* complex that is transferred mainly from the
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Figure 2 . Plots of the emission intensity (/) versus [D-fructose]. A, and
Ae., are 285 and 542 nm for 2+Tb* ((J), 282 and 614 nm for 2-Eu* (O), 282 and
543 nm for 3-Tb> (M) and 274 and 614 nm for 3-Eu* (@), respectively. Other
measurement conditions are the same as those in Figure 1.

calix[4]arene’s aromatic rings.'*

In conclusion, the present study has offered a novel and
unique methodology which is useful not only for the selective
control of the energy-transfer efficiency by saccharides but also
for the discrimination of the energy-transfer path. We believe that
this method is applicable more generally to the mechanistic studies
of the energy-transfer path.
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